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Harmonic moment dynamics in Laplacian growth
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Harmonic moments are integrals of integer powers of z=x+iy over a domain. Here, the domain is an
exterior of a bubble of air growing in an oil layer between two horizontal closely spaced plates. Harmonic
moments are a natural basis for such Laplacian growth phenomena because, unlike other representations, these
moments linearize the zero surface tension problem [S. Richardson, J. Fluid Mech. 56, 609 (1972)], so that all
moments except the lowest one (the area of the bubble) are conserved in time. In our experiments, we directly
determine the harmonic moments and show that for nonzero surface tension, all moments (except the lowest
one) decay in time rather than exhibiting the divergences of other representations. Further, we derive an
expression that relates the derivative of the k" harmonic moment M, to measurable quantities (surface tension,
viscosity, the distance between the plates, and a line integral over the contour encompassing the growing
bubble). The laboratory observations are in good accord with the expression we derive for dM,/dt, which is
proportional to the surface tension; thus in the zero surface tension limit, the moments (above k=0) are all
conserved, in accord with Richardson’s theory. In addition, from the measurements of the time evolution of the
harmonic moments we obtain a value for the surface tension that is within 20% of the accepted value. In
conclusion, our analysis and laboratory observations demonstrate that an interface dynamics description in

terms of harmonic moments is physically realizable and robust.
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I. INTRODUCTION

A. Laplacian growth and viscous fingering

Nonequilibrium processes give rise to a variety of patterns
with remarkable geometrical and dynamical properties [1,2].
Often these processes are represented by the dynamics of an
unstable interface between different phases, and the interface
patterns can exhibit universal features [3]. Examples include
crack propagation [2], fluid-fluid interface dynamics [4],
crystal formation [5], and biological growth [6].

The simplest process leading to unstable universal pat-
terns is Laplacian growth, where the velocity of an interface
is proportional to the gradient of function that is harmonic
outside (or inside) the interface. Here, we examine the sim-
plest example of Laplacian growth, quasi-two-dimensional
(2D) viscous fingering in a Hele-Shaw cell [7], where a vis-
cous fluid is displaced by an inviscid fluid between two hori-
zontal closely spaced parallel plates.

Figure 1 shows four viscous fingering patterns grown in
the radial Hele-Shaw cell described in Sec. IV. Viscous sili-
cone oil is removed from a buffer surrounding the plates and
air enters between the plates through a central hole in the
bottom plate.

As the air bubble expands, the oil/air interface is unstable.
The depth averaged velocity v(x,y) and the pressure p(x,y)
in the oil are approximated by Darcy’s law [8],

———Vp, 1
\4 1207 (1)

where b is the spacing between the plates and w is the dy-
namic oil viscosity. The oil is incompressible, so div v=0.
From Eq. (1) it then follows that in the oil,
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V2p=0. (2)

Since the normal velocities of the interface V and of the fluid
at the interface coincide [8],

(a)

FIG. 1. Viscous fingering patterns of air in oil contained be-
tween two plates separated by 125 um (image size is 14 cm
X 14 cm). (a) Bubble grown at a constant pumping rate of 0.52
mL/min. (b), (c), (d) Bubbles grown with varying pumping rates, as
described in Sec. IV B. The time development of bubble (b) is
shown in Fig. 3.
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where d, is the normal component of the gradient. Because
the air is nearly inviscid, the pressure in the air is essentially
uniform, and its value can be taken as zero. Thus, the pres-
sure jump across the oil/air interface coincides with the oil
pressure at the interface and is given by [4]

p=-ox. )

where o is surface tension and « is the local curvature of the
interface in the horizontal plane. An updated boundary con-
dition including a 7r/4 multiplicative factor and an additional
term correcting for wetting will be presented in Sec. III B.

The asymptotic pressure boundary condition in oil far
from the interface in the radial geometry is

3
p=- 77_nglog(xz + y2) (for x>+ y2 — o), (5)

where Q is the pumping rate (the rate of area growth), which
may depend on time. Equations (1)—(5) complete the descrip-
tion of 2D viscous fingering, which is a prototype of Laplac-
ian growth.

Laplacian growth, a classical free-boundary problem [9],
is famous in physics becasue the process is highly unstable,
dissipative, non-equilibrium, and nonlinear, and because the
growth produces universal patterns [4,10,11]. Laplacian
growth is also famous in mathematics, because the descrip-
tion Egs. (1)—(5), as simple as it looks, reveals a powerful
and profound structure [12-14]

Laplacian growth occurs in many physical systems and is
known by names such as crystal growth, amorphous solidi-
fication [5], electrodeposition [15,16], bacterial colony
growth [6], diffusion-limited aggregation (DLA) [17], mo-
tion of a charged surface in liquid helium [18], and viscous
fingering [19]. There are thousands of articles (theoretical,
experimental, and computational) devoted to Laplacian
growth if one includes work on closely connected problems
such as the Stefan problem (solidification) [20,21], DLA
[22], and the phase-field model [2]. Nevertheless, many fea-
tures remain unexplained, despite extensive effort and full
knowledge of the laws of physics describing the process.

B. Harmonic moments

The present work concerns a powerful description of La-
placian growth called harmonic moments. Our work demon-
strates that robust results for the time evolution of harmonic
moments can be obtained from viscous fingering data. Har-
monic moments are defined as

dxd dz
Mﬁfz*—l=—§f%—z (6)

D T r 2
where k=0,1,...,%, z=x+iy, and the domain of integration

D is exterior to a pattern’s boundary I' and bounded by a
large circle on the outside. These are exterior moments,
which are relevant for exterior Laplacian growth, when a
viscous fluid is outside the interface, as in this work. Interior
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moments, which are relevant for interior Laplacian growth
when a viscous fluid is inside the interface, are defined simi-
larly, but with positive powers of z under the integral, which
is taken over the interior of the pattern.

Harmonic moments are of fundamental importance for
Laplacian growth because in the absence of surface tension,
there is an infinite number of conservation laws, all moments
M, (except for k=0) are conserved in time, as was discov-
ered by Richardson (1972) [23] for the interior Laplacian
growth problem. The conservation laws have been extended
to the exterior case [24] and are experimentally confirmed in
this work. In the harmonic moments basis, the whole evolu-
tion of D(¢) is reduced to the time-dependent area of a grow-
ing bubble, which is M (7). This result selects the “harmonic
basis” M, from all other bases as the best basis for describing
D(z) in Laplacian growth.

Harmonic moments form a complete basis for represent-
ing any 2D interface, regardless of its complicated shape,
provided that D is analytic and singly connected [25,26].
Like Fourier modes, each harmonic moment M, corresponds
to a particular aspect of the interface. The moment M|, is the
area of the domain D divided by 7. Moments M, for k=1
are proportional to the amplitude of a monochromatic wave,
which modulates the circle with an exactly k waves along the
circumference,

z=R exp(i®)[1 + a; exp(— ikp)],

where ¢ is a “stream function” parameter along the interface,
a; is an amplitude, and R is the bubble radius. Specifically,
M=a;R**. For an approximately n-fold pattern, the domi-
nant moments are M,, M,,, M5,, etc. [e.g., Figure 1(b) is
approximately sevenfold symmetric and Fig. 1(c) is approxi-
mately fivefold symmetric]. However, care should be taken
in comparing different moments since they have different
units; the moment M, has units cm?>*.

Viscous fingering structures become extremely complex
for high-growth rates, where tips repeatedly split and form
new fingers and fjords. Hence, it is remarkable that theory
predicts that a set of purely geometrical quantities, M, will
change slowly during the growth process and will have a
well-defined limit as the surface tension approaches zero.
The unique properties of harmonic moments have been al-
ready used to establish connections between Laplacian
growth and other fields of physics and mathematics [12—-14],
but no previous studies have attempted to extract harmonic
moments from laboratory data. Our work demonstrates that
robust moments M, can indeed be obtained from experi-
ments, and particularly that the moments M, for k=1 are
conserved in the limit of zero surface tension.

C. Overview

In the following section, we present some additional prop-
erties of harmonic moments. Sec. III extends the theory for
harmonic moments in viscous fingering to the physical case,
where the surface tension is not zero. In this case, the mo-
ments M, with positive k are no longer conserved, but their
time derivatives are proportional to surface tension and,
hence, vanish in the zero surface tension limit. Section IV
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presents our experimental and data analysis methods. Section
V presents results for harmonic moments determined from
experiments for a wide range of conditions. Also we show
that the results for the harmonic moments can be used to
deduce a physical parameter, such as surface tension. Section
VI discusses the significance of our results.

II. HARMONIC MOMENTS: HISTORY AND
APPLICATIONS

A. Inverse potential problem

The origin of harmonic moments dates back to Isaac
Newton’s study of the inverse potential problem, which was
subsequently investigated by Kelvin, Poincaré, and many re-
searchers in the twentieth century. The inverse potential
problem [25,26] asks how to recover the shape of a domain
occupied by a uniformly distributed mass, given the gravita-
tional potential created by this mass outside the domain. Sur-
prisingly, this classical mathematical problem was found to
be at the heart of the underlying mathematical structure of
Laplacian growth [12-14,23]. In two dimensions the gravi-
tational potential created by uniformly distributed mass (with
unit density) occupying the domain D is given by

1 ! ! !
D(x,y)=— | log|z—2z'|dx'dy
T™Jp

1 o]
= —f log|z'|dx'dy’ — Re>, M7k, (7)
m™Jp k=1

if z and the origin lie outside D. The M,, defined in Eq. (6),
are multipole moments of the mass distribution [27]. In La-
placian growth the M, are traditionally called harmonic mo-
ments. In Eq. (6) the moments M, are defined for a radial
geometry. For a rectangular geometry, where matter occupies
a horizontal semi-infinite strip D with a width L bounded
from the left by an arbitrary curve, and periodically extended
(repeated) both up and down infinitely, the moments are de-
fined as M= [ pexp(-2mkz/L)dxdy/ . This geometry is rel-
evant for Laplacian growth in a rectangular Hele-Shaw chan-
nel, which has been studied since the work by Saffman and
Taylor [4].

B. Connections and applications

In science and engineering it is often of interest to find the
shape of an object from the indirect measurement of the har-
monic moments M. The problem of domain reconstruction
from its moments has applications in many areas, including
signal processing, probability and statistics, tomography, and
the inverse potential problem in geophysics (magnetic and
gravitational anomaly detection) [28]. While the recovery of
shapes from moments is often an ill-posed problem, it was
recently recognized that the moments problem allows the
complete closed form solution for so-called quadrature do-
mains [29], a branch of mathematics created in 1970s
[30,31]. Remarkably, these solutions are based on a tech-
nique of numerical linear algebra that yields numerically
stable and fast algorithms and exposes a deep connection
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between harmonic moments and a theory of analytic ap-
proximation [32,33].

III. THEORY OF HARMONIC MOMENTS WITH
NONZERO SURFACE TENSION

A. Derivation of dM,/dt

In Laplacian growth with nonzero surface tension the har-
monic moments are no longer conserved. To relate the dy-
namics of the harmonic moments to measurable quantities in
viscous fingering, we now obtain an expression for the time
derivative of the harmonic moments in terms of a line inte-
gral over the air/oil interface. The time derivative of M k fol-
lows from the definition (1) and (6), de lzﬂsﬁpz‘ko"np

We want to exchange the derivative between p and z7*
we add and subtract pd,z* from the integrand,

jg(z 9.0 = pa,z +pﬁnz‘k)— (8)
12,u

Here [ is the arc length along the interface I'. The integral of
the first two terms is zero by Gauss’ theorem, after using Eq.
(3) and the analyticity of z™* in D,

§ (z%0,p - pd,z7")dl = 3€ (*Vp-pVzh-ddl
r r

=f V-(z*Vp-pVzHdxdy=0.
D

)
Using Eq. (4) for the pressure, we have
dM b
P __ 9 § kd,z7kdl, (10)

with the interfacial curvature given by k=d6/dl, where 6 is
the angle of a tangent line to the interface. Using the identity
8,77 %=idz *=—ikz"**Vdz/dl, where 9, denotes a tangential

derivative, we have,
kob 1% (k“)dzdﬁ
127 dl

kab* :
— o % Z_(k+1)d€lg, (11)
127T,lL T

ob?i d_6 g
127p )y dl %

where the last expression was obtained using dz/dl
=exp(if). Integrating by parts, we obtain,

dM b? o dz
k +1 % e’ek—zz.
dt Raply 2

— =ok(k+1) (12)

This new result relates a measurable property, the time
derivative of the harmonic moment M, to a measurable line
integral (over a growing bubble) and measurable physical
properties (the surface tension o, viscosity u, and plate spac-
ing b). Equation (12) in the limit that the surface tension
vanishes recovers Richardson’s result for the conservation of
moments. Surface tension is in this context a regular rather
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than singular perturbation. The prediction of Eq. (12), modi-
fied to include the affect of wetting as described in the next
subsection, is tested in Sec. V B.

B. Wetting and scaling correction

The pressure jump at the interface Eq. (4) must be modi-
fied because as the air bubble advances between the glass
plates, it leaves behind a wetting film on each plate. The
thickness of this film increases with the interface’s velocity
[34]. This film can be seen as interference fringes on the
images in Fig. 1, because the interface is slowing down as
the bubble expands. In addition, a factor m/4 is needed in
Eq. (4). The pressure jump including the wetting correction
and a factor /4 [not in Eq. (4)] was calculated by Park and
Homsy to be [34],

(™), 2 M_V”]
p_—a<4)+b[1+3.8<0> , (13)

where V is the local normal velocity of the interface. The
thickness of the film predicted by Park and Homsy was ex-
perimentally confirmed by Tabeling and Libchaber [35] for
6X 1074 <“<3x 107,

The interface velocity V is greatest at the finger tips and is
much smaller at the sides of the fingers. Conventionally the
base of the fjord is called a stagnation point, although in
these experiments there is small motion at the base of the
fjords as a consequence of relaxation due to surface tension;
the base of the fjord becomes more bulbous the longer sur-
face tension has acted on it.

After substituting this new expression (13) for the pres-

sure jump into Eq. (10), we obtain,

dM,  Pw|k+1 [ dz 38i [ [uV\* dz

TS ORI T - o)
(14)

= +
dr T 2| 4 )

C. Testing the theory and determination of surface
tension

In Sec. V we compute the moments M;(r) for growing
viscous fingering patterns directly from the pattern geometry
using the definition Eq. (6). The time evolution of the mo-
ments can be compared to the result in the zero surface ten-
sion limit, where the moments are conserved. We will also
compare different moments by computing the normalized
amplitudes,

ag = [Ml/|Mo[**P, (15)

Further, we can directly test the theory using Eq. (14) and
measuring the time derivative of the moments and indepen-
dently determining,

(i) the fluid surface tension o,

(ii) the fluid viscosity wu,

(iii) the thickness b of the gap between the plates,

(iv) the interface velocity V in the second integral in Eq.
(14) (this can be obtained from analysis of images of the air
bubble as a function of time, described in Sec. IV D), and
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(v) the two integrals in Eq. (14).

Alternatively, we can use the theory to determine a fluid
property if the other four quantities are independently
known. This is the way in which we determine the surface
tension in Sec. V. However, since numerical differentiation
of the data for M(z) is difficult to do accurately, we take one
more step to obtain a working equation with improved signal
to noise: Eq. (14) is integrated over a time interval to obtain,

b? 2 0 dz
M (t,) — M (t;) = ck—(k+ 1 ! dt
i(t2) w(t1) U48M( )ft fﬁre 2

23.8i ( Mv)”3 dz
k+1

12,um' b2

(16)

With only the definition of moments Eq. (6), the dynamics
cannot be related to known physical quantities. However,
with Eq. (16), the dynamics can be quantitatively connected
to known physical quantities. Equation (16) is a cubic equa-
tion of the form ao+ba'3+¢=0, where a, b, and ¢ are com-
plex numbers. We solve this equation numerically in Sec.
V B to deduce the surface tension and to test the predicted
decay rates of the moments.

IV. EXPERIMENT
A. Apparatus

An oil layer is contained in a Hele-Shaw cell consisting of
two horizontal, closely spaced glass plates with a hole
through the center of the bottom plate. When oil is pumped
out of a buffer that surrounds the oil layer, air (at nearly
atmospheric pressure) enters the layer through the hole in the
bottom plate and forms a bubble in the center of the oil layer.

The optically polished glass plates each have diameter
28.8 cm and thickness 6.0 cm; each plate is flat to 0.2 um,
as described in [10,19]. The gap between the plates was ei-
ther 125*+5 um or 384+6 um; most of the gap uncer-
tainty arises from using a micrometer to measure the thick-
ness of the metal shims that set the size of the gap.
Interferometric measurements using a sodium lamp showed
that the gap thickness was uniform to 0.3 um for the
125 pm gap and 1.6 um for the 384 um gap.

The oil was Dow Corning 200 silicone oil at 24 °C. We
measured the viscosity u=49.9*0.3 mPas with a Paar
Physica MCR300 rheometer. The surface tension O, ence
=21.1£0.1 mN/m was measured by the Wilhelmy Plate
method using a Kruss K11 tensiometer. The density was
measured to be p=0.9585+0.0005 g/cm’.

Bubble patterns were imaged from above with a CCD
camera (1300 X 1030 pixels). The frame rate ranged from
1/6 to 2 frames/s, depending on the growth rate of a bubble.

B. Growth of a bubble

Experiments were initiated by obtaining a nearly circular
air bubble, grown by slowly withdrawing oil from the buffer
surrounding the gap between the plates. After an initial
nearly circular bubble had been grown to a radius of at least
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FIG. 2. In order to grow an approximately n-fold symmetric
bubble, the pumping rate is adjusted to follow Eq. (17), as illus-
trated here by curves for different n. The sevenfold bubble in Fig.
1(b) was grown in this way, as indicated by the bold line. We
measure the area of a growing bubble in real time from the video
images, and compute from that area a radius for a circle with that
area. Then, given a target n-fold symmetry, the pumping rate is
adjusted (in small steps) to stay on the desired n-fold curve of the
graph. These curves apply to a cell with gap thickness of 125 um.

2 cm (to give good spatial resolution in the images), multi-
fingered bubbles like those in Fig. 1 were grown by using a
precision computer-controlled syringe pump to remove oil
from the annular buffer at a specified rate. Growth of a full-
sized bubble (15-20 cm diameter) took from 30 to 1600 s
(typically 300 s).

After obtaining a nearly circular bubble, a multifingered
bubble can be obtained by pumping oil out of the buffer.
Usually fluid is removed at a fixed rate, as in our laboratory’s
previous viscous fingering experiments [10,19]. However,
with a fixed pumping rate, the n-fold mode that is the fastest
growing changes with time, and the resultant bubble has
many azimuthal modes with a substantial amplitude [e.g.,
Figure 1(d)].

Our procedure for obtaining the harmonic moments and
deducing the surface tension is applicable for bubbles grown
with any pumping rate, ¢(t)=bQ(t). However, results for the
harmonic moments are more robust if a bubble retains an
approximate n-fold symmetry as it grows. To achieve this,
the pumping rate must decrease in a way that maintains an
approximate n-fold symmetry. A linear stability analysis by
Bataille [36,37] provides an expression for the pumping rate
needed to maintain the same n-fold perturbation of a circle as
the fastest growing [36,37] mode,

2
Qn:_(3n2_1)5 (]7)
M

where R is the radius of the bubble. The bubble radius R
given by the Bataille formula is plotted as a function of the
volumetric pumping rate g=bQ for different n-fold modes in
Fig. 2. Conventional pumping with constant Q would appear
as a vertical trajectory in Fig. 2. For future experiments one
should consider using Park-Homsy pressure jump, p=
—okm/4, instead of using Bataille’s assumption that p=
—OK.
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The particular multifingered pattern that develops depends
not only on pumping rate but also on initial perturbations and
nonuniformities of the glass plates. In the early stages of the
pattern growth, when a bubble begins to deviate from a
circle, small unavoidable departures from the circular shape
have a greater influence on the development of the interface
than the accuracy of pumping or nonuniformities of the glass
plates. In practice, we found the smallest m achievable was
5; for smaller target m the growth was too slow to overcome
initial perturbations on the bubble’s surface before the
bubble reached the edge of the cell. We found that although
the application of the Bataille formula for small perturba-
tions of a circular bubble is not justifiable for bubbles that
have grown large fingers, in practice the Bataille’s expres-
sion remains helpful in maintaining a symmetrical target pat-
tern.

The present work concerns bubbles that are growing
throughout an experiment. If the pumping were stopped, the
surface tension would begin to smooth the interfacial regions
of high curvature, and an interface could even reverse direc-
tion, absorbing the wetting film it left behind.

In most viscous fingering experiments where oil is with-
drawn at a constant rate, the process has a natural separation
of time scales: 1,=A/Q, determined by pumping rate, is usu-
ally much less than the “capillary” time, ¢,=48uR>/
(ob*n(n+1)) (for not very high n), which corresponds to
smoothing of a pattern by surface tension. The difference
between time scales (7,>1,) makes possible the rich inter-
facial patterns. However, in our case there is only a single
time scale because the pumping Q is adjusted continuously
to maintain approximate n-fold symmetry. Equating the
scales 1,~1,, one recovers (within a multiplicative factor
that depends on n) the Bataille formula. Note that for con-
stant pumping the radius of a bubble is given by R~\r,
while in our case R~ 3¢ (because Q~ 1/R and R>~ Qt).

C. Image analysis

The oil/air interface in each image was first obtained by
subtracting the background image, thresholding, and using
an edge detection algorithm. This located the interface to
within a pixel. The resolution of the interface was typically
50 pixels/cm, so that one pixel’s length was about 0.2 mm.

The position of each point on an interface was then ob-
tained with sub-pixel accuracy by interpolating the location
along a line perpendicular to the rough interface that was half
of the intensity difference between the inside of the bubble
(more intense) and the outside of the bubble (less intense).
The algorithm typically found a position of half intensity to
0.1 pixel (about 20 wm, which is small compared to the
125 wm or 384 um plate separation). This procedure
yielded a sufficiently smooth interface so that smoothing was
not needed.

D. Determining surface tension

Equation (16) is used to compute the surface tension. The
time #, is chosen to be when the amplitude a, [given by Eq.
(15)] of the perturbation from a circle exceeds 3 pixels. The
time #, is chosen so that for slowly growing patterns about 10
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images (60 s at 1 frame every 6 s) are collected in #,—1¢,; for
rapidly growing patterns about 20 images (10 s at 2 frame/s)
are obtained.

The velocity V was calculated by projecting the local nor-
mal to the next later good interface. The use of splines al-
lowed for the intersection to occur between interface points,
so that the velocity could be computed more precisely. Sums
of points of the interface were used as approximations of the
contour integrals. The wetting correction (the second inte-
gral) contains the capillary number, Ca=uV/ o, which in our
experiments was in the range 9 X 107> < ’%/ <2 X 1072. This
range of Ca is slightly larger than the range that Tabeling and
Lichaber observed the 2/3 power law relation of the film
thickness [cf. Eq. (13)] [35].

V. RESULTS
A. Harmonic moments

We have calculated the harmonic moments M(¢) by
evaluating the integrals in Eq. (16) for 16 bubbles grown in a
cell with a 125 um gap and for 10 bubbles grown in a
Hele-Shaw cell with a 384 um gap. For each bubble the
values of M,(t) were computed for 50-500 data points
spaced at time intervals 0.5-6 s.

We emphasize that our method for determining harmonic
moments works well for asymmetric as well as symmetric
bubbles. We chose to attempt to develop symmetric bubbles
as they grew in order to track accurately the time evolution
of particular moments M. Hence, for each bubble the pump-
ing rate was adjusted in real time according to Eq. (17), as
described in Sec. V B (cf. Figure 2). Most of the bubbles
evolved toward a targeted n-fold symmetry, which ranged
from fivefold (low-pumping rate) to 14-fold (high-pumping
rate). However, some bubbles had an initial shape that was
too irregular to evolve into an approximately n-fold bubble
during the course of the growth; Fig. 4 is an example of such
a bubble.

Our main result is that all observed moments M,(z) (ex-
cept M) decay in time, as Fig. 3 illustrates. The next sub-
section presents results confirming that dM,/dt is propor-
tional to the surface tension o (neglecting wetting correction)
[cf. Eq. (14)], in accord with Richardson’s result that all
moments are conserved in the zero surface tension case.

B. Test of theory and determination of the surface
tension

In the theoretical expression for M, (t,)—M,(t,), Eq. (16),
all quantities can either be determined from our measure-
ments or from independent measurements. Hence, the theory
can be directly tested with no adjustable parameters.

We chose to present the test of theory as the ratio of the
surface tension deduced from Eq. (16), which we call
O neasured> 10 the reference value of surface tension measured
by the Wilhemy Plate method, 0,,ference- Thus surface ten-
sion is treated as an unknown whose value can be deduced
from Eq. (16), where the integrals and velocity V are deter-
mined from analyses of the bubble patterns, while the vis-
cosity w and gap b are measured independently.
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0 100 200 300 400
time (s)

FIG. 3. (a) An air bubble growing in oil in the Hele-Shaw cell
(plate separation, 125 wm). Adjacent interfaces are separated by 56
s, and the maximum span of the bubble is 8§ cm. The time-
dependent pumping rate selects the sevenfold symmetry (cf. Figure
2). (b) Amplitudes of moments 6, 7, 8, 10, and 14, computed using
Eq. (6); note that different moments have different units. All mo-
ments decay in time, in contrast to the zero surface tension case
where the moments are constant.

An example of the results deduced for the surface tension
ratio is shown in Fig. 5, which was computed for the non-
symmetric bubble pattern in Fig. 4. For this bubble, the sur-
face tension deduced without a wetting correction is 30%
larger than the reference value at short times, where the front
velocity is large (see Fig. 4), while at long times the front
velocity has become smaller and the difference between the
ratios with and without the wetting correction is only a few
percent. Further, both ratios are within a few percent of unity,
so the value of surface tension deduced from theory is equal
to the reference value within the experimental uncertainty.

A measure of the symmetry of a bubble is given by the
spectrum of the harmonic moments, i.e., a plot of the nor-
malized moment amplitude, as shown in Fig. 6 for the sym-
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FIG. 4. An air bubble growing without a clean n-fold symmetry.
Adjacent interfaces are separated by 20 s.

metric bubble in Fig. 3 and for the nonsymmetric bubble in
Fig. 4. The approximately sevenfold bubble in Fig. 3 has a
spectrum with significant components at 7, 14, and 21 [Fig.
6(a)], while the nonsymmetric bubble in Fig. 4 has a spec-
trum with a larger number of significant components, includ-
ing those at 5, 6, 7, and 8 [Fig. 6(b)].

The mean value for the surface tension ,,,45eq Was de-
duced from Eq. (16), including the wetting correction, for
each of the 26 bubbles studied, where each bubble was
evaluated at 50-500 times during the course of its growth;

N
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FIG. 5. The ratio of the surface tension value deduced from
theory for the data in Fig. 4 to the value independently measured by
a traditional method (see text). The upper points (X ) are without a
wetting correction, and the lower points (¢) are with the wetting
correction in Eq. (16) [the term with the factor 3.8]. The error bars
show the standard deviation for each group of points. The value of
t,—1; in Eq. (16) was 10 s. The horizontal axis corresponds to ;.
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FIG. 6. Spectra of the nondimensional moment amplitudes
[M,]/|My|®*"2 [Eq. (15)] for two bubbles: (a) A bubble with ap-
proximately sevenfold symmetry [Fig. 3(a)], where the main mo-
ments are 7, 14, and 21. The moments were calculated at the 112th
second of the experiment. (b) A bubble without n-fold symmetry
(Fig. 4), where there is a broad spectrum with no dominant moment.
The moments were calculated at the 64th second of the experiment.

this involved the numerical evaluation of the integrals in Eq.
(16) for more than 6000 data sets. The result iS 0,easured
=18 =4 mN/m, where the uncertainty includes both the sta-
tistical uncertainty and the estimated systematic uncertainty
(see next paragraph). The result for o,,,,..s agrees within
the experimental uncertainty with Oreference
=21.1£0.1 mN/m, determined by the Wilhelmy Plate
method. Thus, the theory is quantitatively confirmed within
the experimental uncertainty. [If the wetting correction in Eq.
(16) is neglected, the result for the surface tension is
23+ 6 mN/m.] Further, we have examined the dependence
of the deduced value of o on the order of the moment for the
accessible moments, k=5 to k=14, and found no discernible
variation with k, nor is there any difference in the value of o
for rapidly grown bubbles, which do not have even approxi-
mate k-fold symmetry.

The uncertainty in our result for o,,,,,.¢ Unfortunately
arises in part from a possible systematic error of 9%. The
uncertainty in gap thickness (about 4%) contributes signifi-
cantly to the overall uncertainty. Also, an intermittent prob-
lem in camera synchronization could have introduced timing
errors in some of the data. Other possible sources of error
include the discretization of the integrals and the approxima-
tions introduced by the theoretical analysis. The range of
applicability of the 2/3 scaling for the film thickness is
smaller than the range of Ca produced in our experiments.
Another intriguing possible source of error is the 3.8 factor
in the wetting correction [34], which has its origin in a nu-
merical integration done in the 1974 Ph.D. Dissertation by
Ruschak [38]. If the numerical factor of 3.8 were changed to
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FIG. 7. The distribution of the ratios of surface tension deduced
from theory, Geasureds 1O Oreference> determined by the Wilhelmy
Plate method. The solid line represents computations that include
the wetting term, while the dotted line neglects the wetting correc-
tion. The bin size is 0.05. A few outlying points are outside of the
abscissa’s range.

1.5, then the mean of the distribution in Fig. 7 would corre-
spond to unity. Note that the wetting correction becomes
small at long times because the growth velocity V becomes
small if the bubbles are grown according to Eq. (17).

The statistics of the results are presented in Fig. 7 as
histograms of the ratio 0y,.asureq! Treference Calculated both
with and without the wetting correction. The distribution in-
cluding the wetting correction is narrower because the uncor-
rected data depend on the pattern growth velocity. The mean
value of the ratio with wetting correction is 0.84 =0.09
(standard deviation, statistical uncertainty only); the mean
value without wetting correction is 1.10*0.1(standard de-
viation).

Future experiments can straightforwardly reduce the sys-
tematic uncertainty. Such experiments should focus on low
order moments at intermediate times, to minimize the correc-
tion due to wetting without encountering backward motion
of the interface.

Bubbles in our experiments were all studied for pumping
rates Q>0. Alternatively, one could stop the growth (set Q
=0) and observe the relaxation of a bubble. We conducted a
few experiments in this way and found that the extracted
surface tension values were typically 15%-25% lower than
those for growing bubbles. However, for relaxing bubbles
the correction for the oil wetting film, which is reabsorbed as
the interface retreats, is not known.

VI. DISCUSSION
A. Harmonic moments

We have presented the first demonstration that robust har-
monic moments M ,(¢) can be deduced from laboratory ex-
periments. Our result for the time derivative of M,(r) [Eq.
(12), or in the form used to compare with experiment, Egs.
(14) and (16)] shows that the moments evolve in time be-
cause of nonzero surface tension [Fig. 3(b)]; otherwise all
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moments except M, would be conserved. The harmonic mo-
ments are purely geometric quantities [cf. Eq. (6)] and do not
involve approximations, fluid properties, or experimental pa-
rameters, such as the wetting correction, viscosity, or the gap
thickness.

Further, we have derived a relation between the time de-
rivative of the harmonic moments [Eq. (12), or in the form
used to compare with experiments, Eq. (16)] and quantities
that can all be directly determined by experiment, thus pro-
viding a quantitative test of the theory of harmonic moments.
The result from measurements on 26 bubbles for two differ-
ent Hele-Shaw cell gap thicknesses is that theory and experi-
ment agree within the experimental uncertainty (about 20%).
This agreement was obtained both on nonsymmetric bubbles
and on bubbles with approximate n-fold symmetries varying
from 5 to 14. This agreement is robust and, within our ex-
periments, does not depend on how far a bubble has deviated
from a circle. Further, we have indicated how it should be
straightforward to reduce the experimental uncertainty by an
order of magnitude, to test the theory at about a 1% level.

For convenience we have used an expression obtained by
Bataille Eq. (17) to adjust the pumping rate Q(f) to grow
bubbles that are approximately n-fold symmetric. We find
that if an n-fold bubble is grown initially from a slightly
perturbed circle, the n-fold symmetry is retained even for
large amplitude fingers, far beyond range of applicability of
Eq. (17), which was obtained from a linear stability analysis.

B. Implications

Harmonic moments M, form a complete basis for any
complicated time domain D, provided that D is analytic and
singly connected. These moments are exceptionally useful
for Laplacian growth phenomena such as viscous fingering
because all other known representations involve coefficients
that change quickly because of instability, thus creating ana-
lytic and computational difficulties. In contrast, harmonic
moments are free of these problems, no matter how much the
domain D deviates from a circle. Loosely speaking, for har-
monic moments the whole instability is simply concentrated
in the lowest one, M|, (the area of D).

From a fundamental perspective, the moments M for La-
placian growth are exactly the basis that linearizes and
“solves” the zero surface tension problem, generating a mul-
titude of exact solutions (summarized in [14]; see also refer-
ences therein), which are impossible to obtain in any other
basis. In this sense, the harmonic moments constitute the
most natural basis for Laplacian growth. Our experiments
confirm that for nonzero surface tension, the derivative of the
moments dM,/dt is simply proportional to o (neglecting the
wetting correction), so that the zero surface tension limit is
smoothly approached. This indicates that the fundamental
theoretical results mentioned above, which have been ob-
tained for Laplacian growth theory for the case of zero sur-
face tension, are relevant to real physical systems.

In conclusion, the implications of the demonstration of
the harmonic moments description of viscous fingering ex-
tends into various branches of mathematical physics (cf. Sec.
II) because of the deep connection between Laplacian growth
and other problems.
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